Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(13): 15773-15782, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526295

ABSTRACT

Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells. The flexible TENG with a sandwich structure was fabricated using a PCL nanofibrous layer, Kapton, and silicon rubber. The TENG could be folded to any degree and twisted, and it could return to its original shape when the force was removed. Cultured cells received ES twice and three times daily for 8 days, with a 30 min interval between sessions. By applying current in a safe range and appropriate time (twice daily), fibroblasts demonstrate an accelerated proliferation and migration rate. These observations were confirmed through cell staining. Additionally, in vitro tests demonstrated the TENG's ability to simultaneously provide ES and release vitamin C from the patch. After 2 h, the amount of released drug increased 2 times in comparison to the control group. These findings provide support for the development of a TENG for the treatment of wounds, which underlines the promise of this new technique for developing portable electric stimulation devices.


Subject(s)
Ascorbic Acid , Fibroblasts , Humans , Drug Liberation , Electric Stimulation , Cell Proliferation
2.
Sci Rep ; 13(1): 14656, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670076

ABSTRACT

Mechanical properties of bacterial colonies are crucial considering both addressing their pathogenic effects and exploring their potential applications. Viscoelasticity is a key mechanical property with major impacts on the cell shapes and functions, which reflects the information about the cell envelope constituents. Hereby, we have proposed the application of photoacoustic viscoelasticity (PAVE) for studying the rheological properties of bacterial colonies. In this regard, we employed an intensity-modulated laser beam as the excitation source followed by the phase delay measurement between the generated PA signal and the reference for the characterization of colonies of two different types of Gram-positive and Gram-negative bacteria. The results of our study show that the colony of Staphylococcus aureus as Gram-positive bacteria has a significantly higher viscoelasticity ratio compared to that value for Acinetobacter baumannii as Gram-negative bacteria (77% difference). This may be due to the differing cell envelope structure between the two species, but we cannot rule out effects of biofilm formation in the colonies. Furthermore, a lumped model has been provided for the mechanical properties of bacterial colonies.


Subject(s)
Acinetobacter baumannii , Gram-Positive Bacteria , Anti-Bacterial Agents , Gram-Negative Bacteria , Cell Aggregation
3.
Biomed Phys Eng Express ; 9(6)2023 09 29.
Article in English | MEDLINE | ID: mdl-37703844

ABSTRACT

The electromechanical properties of the membrane of endothelial cells forming the blood-brain barrier play a vital role in the function of this barrier. The mechanical effect exerted by external electric fields on the membrane could change its electrical properties. In this study the effect of extremely low frequency (ELF) external electric fields on the electrical activity of these cells has been studied by considering the mechanical effect of these fields on the capacitance of the membrane. The effect of time-dependent capacitance of the membrane is incorporated in the current components of the parallel conductance model for the electrical activity of the cells. The results show that the application of ELF electric fields induces hyperpolarization, having an indirect effect on the release of nitric oxide from the endothelial cell and the polymerization of actin filaments. Accordingly, this could play an important role in the permeability of the barrier. Our finding can have possible consequences in the field of drug delivery into the central nervous system.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Membrane Potentials , Computer Simulation
4.
Biomater Adv ; 149: 213364, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996572

ABSTRACT

Skin wounds are common in accidental injuries, surgical operations, and chronic diseases. The migration and proliferation of fibroblast cells are fundamental to wound healing, which can be promoted by electrical stimulation as a physical therapy modality. Therefore, the development of portable electrical stimulation devices that can be used by patients on-site is an essential need. In the present study, a self-cleaning triboelectric nanogenerator (TENG) has been fabricated for enhancing cell proliferation and migration. The polycaprolactone­titanium dioxide (PCL/TiO2) and polydimethylsiloxane (PDMS) layers were fabricated via a facile method and used as the electropositive and electronegative pair, respectively. The effect of stimulation time on proliferation and migration of fibroblast cells was investigated. The results demonstrated that when the cells were stimulated once-a-day for 40 min, the cell viability was increased, while a long daily stimulation time has an inhibitory effect. Under electrical stimulation, the cells move toward the middle of the scratch, making the scratch almost invisible. During repeated movements, the prepared TENG connected to a rat skin generated an open-circuit voltage and a short-circuit current around 4 V and 0.2 µA, respectively. The proposed self-powered device can pave the way for a promising therapeutic strategy for patients with chronic wounds.


Subject(s)
Accidental Injuries , Skin , Animals , Rats , Fibroblasts , Wound Healing , Cell Proliferation
5.
J Photochem Photobiol B ; 240: 112630, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736030

ABSTRACT

Candidiasis occurs mainly in immunocompromised patients. Rapid detection of Candida species can play a major role in the successful management of fungal infections and treatment monitoring. Detection and discrimination of five common strains of Candida species was performed using the optical elastic scattering diffraction pattern of their colonies. Using laser light with 632 nm wavelength and the designed optical system, optical diffraction patterns of C. albicans (ATCC12261), C. tropicalis (ATCC20336), C. glabrata (15545), C. guilliermondii (20216), and C. parapsilosis (22019) were recorded, processed and analyzed. The results of our study show that based on the different structure of Candida species and dissimilar structure of their colonies, the difference between acquired diffraction patterns are recognizable. In addition, through extraction of statistical feature of the diffraction pattern images and using classification techniques, the detection and discrimination could be performed in a semi-automatic way. The analysis of the colonies of five different Candida species by the optical diffraction patterns generated from the interaction of the laser with colonies' structures demonstrated that the technique had the potential to be applied for the detection and discrimination of various species.


Subject(s)
Candida , Candidiasis , Humans , Antifungal Agents , Candidiasis/drug therapy , Candidiasis/microbiology , Candida albicans , Candida parapsilosis
6.
Sci Rep ; 12(1): 15789, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138046

ABSTRACT

Considering the severe hazards of abnormal concentration level of H2S as an extremely toxic gas to the human body and due to the disability of olfactory system in sensing toxic level of H2S concentration, a reliable, sensitive, selective and rapid method for the detection of H2S is proposed and its efficacy is analyzed through simulation. The proposed system is based on the deflection of a laser beam in response to the temperature variations in its path. In order to provide selectivity and improve sensitivity, gold nanostructures were employed in the system. The selectivity was introduced based on the thiol-gold interactions and the sensitivity of the system was enhanced due to the modification of plasmon resonance behavior of gold nanostructures in response to gas adsorption. Results from our analysis demonstrate that compared with Au and SiO2-Au, the Au nanomatryoshka structures (Au-SiO2-Au) showed the highest sensitivity due to promoting higher deflections of the laser beam.


Subject(s)
Nanostructures , Silicon Dioxide , Gold/chemistry , Humans , Lasers , Nanostructures/chemistry , Sulfhydryl Compounds
7.
Sci Rep ; 12(1): 13411, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927441

ABSTRACT

Neurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently available clinical treatment in this regard. As an effective energy harvester, the triboelectric nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output of the TENG provides stimulation pulses for nerves. In the present study, using a computational modelling approach, the effect of surface micropatterns on the electric field distribution, induced voltage and capacitance of the TENG structures have been investigated. By incorporating the effect of the TENG inside the mathematical model of neuron's electrical behavior (cable equation with Hodgkin-Huxley model), its impact on the electrical behavior of the neurons has been studied. The results show that the TENG operates differently with various surface modifications. The performance of the TENG in excitation of neurons depends on the contact and release speed of its electrodes accordingly.


Subject(s)
Electric Power Supplies , Nanotechnology , Computer Simulation , Electricity , Nanotechnology/methods , Neurons
8.
Nanotechnology ; 33(47)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35977448

ABSTRACT

Self-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route. In this study, GO-based self-powered photodetectors have been fabricated by conflating the photosensitivity and triboelectric characteristics of freestanding GO paper. In this regard, photodetection via TENGs has been investigated in two forms of active and passive circuits for ultraviolet (UV) and visible illumination. The photodetector responsivity upon UV enhanced from 0.011 mA W-1for conventional GO-photoresistors up to 13.41 mA W-1by active photodetection setup. Moreover, applying the active-TENG improved the efficiency from 0.25% (in passive TENG) to 4.21%. Our findings demonstrate that active TENGs might enable materials with insignificant optical response to represent considerably higher light-sensitivity by means of synergizing the effect of TENG output changes with opto-electronical properties of desired layers.

9.
Comput Methods Programs Biomed ; 222: 106913, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35738092

ABSTRACT

BACKGROUND AND OBJECTIVE: It is known that the disintegration of microtubules in neurons occurs in response to the phosphorylation of the tau proteins that promotes the structural instability of the microtubules, as one of the factors underlying the onset of Alzheimer's disease (AD). METHODS: In this study, the mechanical variations undergone by the tau protein's and microtubule's structures due to the action of intrinsic magnetite nanoparticles inside the brain tissue have been computationally modeled using the finite element (FEM) method. RESULTS: The von Mises stress induced by magnetite nanoparticles, subject to an applied alternating magnetic field, leads to local heating and mechanical forces, prompting a corresponding deformation in, and displacement of, the microtubule and the tau protein. CONCLUSIONS: The induction of these deformations would increase the probability of the microtubules' depolymerization, and hence their eventual structural disintegration.


Subject(s)
Magnetite Nanoparticles , Microtubules , tau Proteins , Alzheimer Disease/metabolism , Humans , Magnetic Fields , Magnetite Nanoparticles/chemistry , Microtubules/metabolism , Neurons/metabolism , tau Proteins/metabolism
10.
Mikrochim Acta ; 188(10): 357, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34595588

ABSTRACT

A novel carbon fiber microsensor (CFMS) with the capability of being inserted in the cochlear implant structure is introduced for in situ measurement of corticosteroid concentration. The microsensor structure is composed of a carbon microfiber, an Ag wire, and a Pt wire acting respectively as a working electrode, a reference electrode, and a counter electrode. In addition, a silicone septum is used for isolation purposes in place of the epoxy resin. The septum-insulated microsensor is capable of monitoring the concentration of the corticosteroids in the perilymph fluid without a need for sampling from the inner ear fluid and the consequent ex vivo analysis. The electrochemical determination of the corticosteroids was investigated on the carbon fiber electrode surface by differential pulse voltammetry. During the reduction of dexamethasone (DEX), a cathodic peak with a peak potential of -1.3 V appeared at the CFMS. Using the CFMS under optimized conditions, a calibration plot of the dexamethasone (DEX) in the artificial perilymph solution exhibited two linear ranges from 10 nM to 2 µM and 2 to 40 µM (sensitivity equal to 16.55 µA µM-1 cm-2; LOD = 4 nM) conforming with the DEX concentration range inside the inner ear after the insertion of a drug-eluting cochlear implant electrode (CIE). Furthermore, the interferences occurring in the hearing functions of the CIE after the presence and function of the CFMS were simulated numerically using the finite element method. According to our results, decreasing the size of the microsensor introduces lower interferences with the auditory function of the cochlear implant electrode.


Subject(s)
Carbon Fiber
11.
Article in English | MEDLINE | ID: mdl-34521074

ABSTRACT

In view of efficiency, simple operation, and affordable cost and disposability, quartz tuning fork systems form good candidates for mechanical-based biosensors in point of care applications. Based on the geometrical structure, the frequency response of the tuning fork- based sensors is dependent on the location of absorbed samples. In order to have the maximum efficiency and sensitivity, the optimized condition of sample loading on the fork structures should be considered. In this regard, here, we have determined the optimized sample location to be on the prongs of the quartz tuning fork by calculating the frequency response of the quartz tuning fork using the finite element method. From an application point of view, we have obtained an agreement between the calculational method and the experimental excitation technique of the structure. The results from our study show that by using an appropriate location for the sample, the quartz tuning fork could be exploited with high sensitivity.

12.
Mikrochim Acta ; 188(8): 251, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34255212

ABSTRACT

A triboelectric nanogenerator (TENG) electrode sensitive to the adsorption of water molecules has been introduced to create a self-powered humidity sensor. Graphene oxide (GO) nanosheets and graphene oxide nanoribbon (GONR) possessing oxygenated functional groups, as well as high dielectric constants, have been proposed as appropriate candidates for this purpose. GO papers have been fabricated in three forms, i.e. pure  GO paper, uniform composites of GONR and GO, and double-layer structures of GONR on top of  GO. Results showed that all of the prepared paper-based TENGs revealed excellent performances by maximum output voltage above 300 V. As active humidity sensors, the maximum voltage response values of 57%, 124%, and 78% were obtained for GO, GONR+GO, and GONR/GO TENGs, respectively. Besides high sensitivity and precision of all variants, GO+GONR TENG demonstrated a rapid response/recovery behavior (0.3/0.5 s). This phenomenon can be attributed to the higher oxygenated groups and defects on the edges of GONR, which leads to facilitating the bulk diffusion of water molecules. Our results open new avenues of GONR application as an additive to enhance the performance of self-powered humidity sensors, as well as conventional hygrometers.

13.
Iran J Pharm Res ; 19(1): 260-270, 2020.
Article in English | MEDLINE | ID: mdl-32922485

ABSTRACT

LED light is used for many medical and cosmetic applications such as phototherapy and skin rejuvenation. Such physical methods can be combined with drug therapy, such as LED-responsive drug delivery system, the subject of present investigation. To perform this investigation, a nanoliposome composed of DPPC, DSPE-PEG2000, and DC8,9PC, was prepared as LED-sensitive systems. Calcein was loaded in the liposomes as a fluorescent probe for drug release studies. Different LED wavelengths (blue, green and red) were used for triggering release of calcein from nanoliposome. Indoor daylight, darkness, and sunlight were applied as controls. Results showed that liposomes do not release their cargo in darkness, but they released it in response to indoor daylight, sunlight and LEDs, with the blue light showing the highest effect. Results also showed that release of calcein was sensitive to wavelength. Our results reveal potential of LED-sensitive liposomes for medical and cosmetic applications and that such system can be combined with phototherapy. Such concomitant therapies can increase medical/cosmetic effects and decrease adverse reactions to phototherapy.

14.
Sci Rep ; 10(1): 7312, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355191

ABSTRACT

Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs. Outstanding power density as high as 1.3 W.m-2, an open-circuit voltage up to 870 V, and a current density of 1.4 µA.cm-2 has been extracted in vertical contact-separation mode. The all-flexible TENG has been employed as a self-powered humidity sensor to investigate the effect of raising humidity on the output voltage and current by applying mechanical agitation in two forms of using a tapping device and finger tapping. Due to the presence of superficial functional groups on the GO paper, water molecules are inclined to be adsorbed, resulting in a considerable reduction in both generated voltage (from 144 V to 14 V) and current (from 23 µA to 3.7 µA) within the range of relative humidity of 20% to 99%. These results provide a promising applicability of the first suggested sensitive self-powered GO TENG humidity sensor in portable/wearable electronics.

15.
Heliyon ; 6(4): e03652, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32258511

ABSTRACT

Effect of sandblasting of the copper electrode structures before deposition of gold thin film for micro electrical impedance tomography (EIT) system has been studied experimentally. The comparison has been performed on the unmodified copper electrodes and the sandblasted electrodes before deposition of gold layer, using structural analysis while their performance in EIT system has been measured and analyzed. The results of scanning electron microscopy and atomic force microscopy show that the sandblasting of the electrodes results in the deposition of gold film with smaller grain size and uniformly, comparing to the unmodified structure. The measurement of impedance shows that the sandblasting will increase the double layer capacitance of electrode structure which improves the impedance measurement accordingly.

16.
Photodiagnosis Photodyn Ther ; 30: 101695, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32109618

ABSTRACT

BACKGROUND: Metabolic reprogramming in cancer cells is a strategy to attain a high proliferation rate, invasion, and metastasis. In this study, the effects of phototherapy at different wavelengths were investigated on the metabolic activity of breast cancer cells. METHODS: The states of the MCF7 cells proliferation and viability were measured by the MTT assay. Glucose consumption and the lactate formation in the LED-irradiated cells culture were analyzed by biochemical assay kits. The Amino acid concentration in the culture media of the MCF7 cells was analyzed using HPLC. Moreover, the gene expression of some glycolytic, TCA cycle and pentose phosphate cycleenzymes were assessed by real time PCR. RESULTS: Phototherapy at wavelength of 435 nm decreased the cell viability by 23 % when the energy dose was 17.5 J/cm2 compared to the control group. The expression of the LDHA and GLS was up-regulated in 629 nm-treated cells while the expression of these genes was down-regulated in the MCF7 cells irradiated at 435 nm in comparison with the control group. Consequently, the glucose consumption and the lactate formation were diminished respectively by 22 % and 15 % in the 435 nm-irradiated cells while the glucose consumption and the lactate formation were increased in the 629 nm-irradiated cells by 112 % and 107 % in comparison with the control group. In addition, the analysis of the glutamine concentration by the HPLC indicated that the blue light irradiation decreased the glutamine consumption while the red light increased it in comparison with the control group.


Subject(s)
Breast Neoplasms , Photochemotherapy , Cell Survival , Humans , Photochemotherapy/methods , Photosensitizing Agents , Phototherapy
17.
J Photochem Photobiol B ; 204: 111812, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32062391

ABSTRACT

One of the most important barriers to the detection of the biological autoluminescence (BAL) from biosystems using a non-invasive monitoring approach, in both the in vivo and the in vitro applications, is its very low signal intensity (< 1000 photons/s/cm2). Experimental studies have revealed that the formation of electron excited species, as a result of reactions of biomolecules with reactive oxygen species (ROS), is the principal biochemical source of the BAL which occurs during the cell metabolism. Mitochondria, as the most important organelles involved in oxidative metabolism, are considered to be the main intracellular BAL source. Hence, in order to achieve the BAL enhancement via affecting the mitochondria, we prepared a novel mitochondrial-liposomal nanocarrier with two attractive features including the intra-liposomal gold nanoparticle synthesizing ability and the mitochondria penetration capability. The results indicate that these nanocarriers (with the average size of 131.1 ±â€¯20.1 nm) are not only able to synthesize the gold nanoparticles within them (with the average size of 15 nm) and penetrate into the U2OS cell mitochondria, but they are also able to amplify the BAL signals. Our results open new possibilities for the use of biological autoluminescence as a non-invasive and label-free monitoring method in nanomedicine and biotechnology.


Subject(s)
Gold/chemistry , Liposomes/chemistry , Metal Nanoparticles/chemistry , Mitochondria/metabolism , Cell Line, Tumor , Humans , Liposomes/metabolism , Microscopy, Fluorescence , Reactive Oxygen Species/metabolism
18.
Mikrochim Acta ; 187(2): 117, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31925565

ABSTRACT

The room temperature polar vapor sensing behavior of a graphene-TiS3 heterojunction material and TiS3 nanoribbons is described. The nanoribbons were synthesized via chemical vapor transport (CVT) and their structure was investigated by scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and Fourier transform infrared spectroscopies. The gas sensing performance was assessed by following the changes in their resistivities. Sensing devices were fabricated with gold contacts and with lithographically patterned graphene (Gr) electrodes in a heterojunction Gr-TiS3-Gr. The gold contacted TiS3 device has a rather linear I-V behavior while the Gr-TiS3-Gr heterojunction forms a contact with a higher Schottky barrier (250 meV). The I-V responses of the sensors were recorded at room temperature at a relative humidity of 55% and for different ethanol vapor concentrations (varying from 2 to 20 ppm). The plots indicate an increase in the resistance of Gr-TiS3-Gr due to adsorption of water and ethanol with a relatively high sensing response (~495% at 2 ppm). The results reveal that stable responses to 2 ppm concentrations of ethanol are achieved at room temperature. The response and recovery times are around 8 s and 72 s, respectively. Weaker responses are obtained for methanol and acetone. Graphical abstract Schematic representation of resistance sensor for detection of low concentration of ethanol vapor. The graphene and TiS3 nanoribbons were synthesized using chemical vapor deposition and chemical vapor transport technique respectively. The 2D graphene/TiS3 heterojunction device was fabricated to make a high response sensor due to their synergy effect.

19.
Front Bioeng Biotechnol ; 8: 582713, 2020.
Article in English | MEDLINE | ID: mdl-33520951

ABSTRACT

Carbon nanotubes (CNTs) coatings have been shown over the past few years as a promising material for neural interface applications. In particular, in the field of nerve implants, CNTs have fundamental advantages due to their unique mechanical and electrical properties. In this study, carbon nanotubes multi-electrode arrays (CNT-modified-Au MEAs) were fabricated based on gold multi-electrode arrays (Au-MEAs). The electrochemical impedance spectra of CNT-modified-Au MEA and Au-MEA were compared employing equivalent circuit models. In comparison with Au-MEA (17 Ω), CNT-modified-Au MEA (8 Ω) lowered the overall impedance of the electrode at 1 kHz by 50%. The results showed that CNT-modified-Au MEAs have good properties such as low impedance, high stability and durability, as well as scratch resistance, which makes them appropriate for long-term application in neural interfaces.

20.
ACS Chem Neurosci ; 11(1): 25-33, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31760746

ABSTRACT

Catecholamine neurotransmitters, specifically, dopamine (DA), epinephrine (EP), and norepinephrine (NE), are known as substantial indicators of various neurological diseases. Developing rapid detection methods capable of simultaneously screening their concentrations is highly desired for early clinical diagnosis of such diseases. To this aim, we have designed an optical sensor array using three fluorescent dyes with distinct emission bands and have monitored variations in their emission profiles upon the addition of DA, EP, and NE in the presence of gold ions. Because of the different reducing power of catecholamines, differently sized gold nanoparticles (GNPs) with different levels of aggregation were generated, resulting in different amounts of spectral overlap between the absorption band of the in situ generated plasmonic GNPs and the emission bands of the fluorescent dyes. These energy-transfer-based fingerprint profiles were used to discriminate the neurotransmitters by applying pattern recognition methods including linear discriminant analysis (LDA) and artificial neural networks (ANN) and to determine their concentration using multiple linear regression (MLR). Our proposed array also showed a good performance in the discrimination of DA, EP, and NE in complex biological media such as human urine.


Subject(s)
Dopamine/urine , Epinephrine/urine , Fluorescence Resonance Energy Transfer/methods , Neural Networks, Computer , Norepinephrine/urine , Protein Array Analysis/methods , Humans , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...